
R E LI A B I L IT Y M A N AG E M E N T W H I T E PA PE RR E LI A B I L IT Y M A N AG E M E N T W H I T E PA PE R

Achieving
SLO Success
with Golden Signals & Reliability Testing

2ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

3

4

5

7

8

11

TABLE OF
CONTENTS

Executive Summary

What are the four Golden Signals?

What are service level objectives (SLOs),
and why are they so hard to implement?

How to integrate Golden Signals into your SLOs

How to ensure you continually meet your SLOs

Conclusion

3ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

Executive Summary
Golden Signals represent the most important attributes of a system from the
user’s perspective and should be the foundation of any observability practice.
This is especially true for organizations that provide Service Level Agreements
(SLAs) to their customers, as SLA violations can have financial and legal
consequences. In this white paper, we explain what the four Golden Signals are,
how they fit into your organization’s reliability goals, and how you can use them
to become more successful at meeting your SLAs and providing the best possible
customer experience.

4ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

What are the four Golden Signals?
Having visibility into the health of your services is critical, but collecting too much data can be counterproductive.
There are countless metrics to track, including CPU usage, network latency, processes, and uptime. Even for
experienced SREs, identifying the right metrics to track isn’t always straightforward, especially when working with
large, complex systems.

Google provides guidance on key metrics through the four Golden Signals: latency, traffic, error rate, and
resource saturation. These represent the most important attributes of a system by telling us how well the
system is performing, how close it is to its maximum capacity, what errors it’s generating (if any), and how many
more users it can serve before problems start to arise.

Golden Signals originated from the Google Site Reliability
Engineering Handbook. Many teams have adopted Golden
Signals into their monitoring and alerting practices.

L ATENCY
Latency is the difference in time between when one part of a system (such as a service) sends a request
and when it receives a response. In a distributed system, latency between services has a significant impact on
performance. For example, imagine an online banking application consisting of a front end and a database. When
a user submits a deposit, the front end has to perform multiple steps:

1 – Retrieve the user’s account info from the database.

2 – Verify and process the deposit.

3 – Store the transaction in the database.

4 – Display a confirmation (or error) message to the user.

Each of these steps introduces latency, and the longer they take or, the more steps that are involved, the slower
the experience becomes for the user.

The challenge with distributed system latency is that small amounts can lead to an exponentially slower experience.
Even under tightly controlled conditions, adding just 100 milliseconds of latency can reduce the performance
of a web service by up to 140%. Imagine if your users were accessing your service over a slow network
connection, or if an unusually high amount of traffic in your data center is causing network congestion. This is why
latency is important to users.

5ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

TR AFFIC
Traffic is the amount of demand being placed on your systems and services. Traffic is best measured in a
way specific to your services and how your users interact with them. For example:

• Search engines might track queries per second.

• Web applications might track HTTP requests or page loads per second.

• Backend services or public-facing APIs might track API requests per second.

• Banks might track transactions per second.

• Databases and file storage services might track data throughput in gigabytes
or terabytes per second.

ERROR R ATE
Not every request can be processed successfully. Maybe a user sent a request that was improperly formatted,
an undiscovered bug in our backend code caused a crash, or the user’s network connection dropped out mid-
transaction. A certain number of requests will fail, and when measured as a percentage of all requests,
this is called the error rate.

Tracking and troubleshooting errors ranges in difficulty depending on where the error occurred. Errors generated
by our services are relatively easy to detect if we have observability since we can pull up logs, metrics, and traces.
Errors generated by a user’s system are more difficult since we don’t have direct access to those systems. Errors
can also masquerade as successes: for example, if a user can successfully access a website’s login page but enters
an incorrect password, should that count as an error?

To accurately reflect the user experience, engineers should differentiate between errors generated by
infrastructure (e.g. network disconnections, failed requests, and hardware failures) and errors generated by
services (e.g. bad user data, security controls, and invalid requests).

RESOURCE SATUR ATION
Saturation measures how much of a given resource is being consumed. At an infrastructure level, this
includes CPU, memory (RAM), disk space, disk bandwidth, and network utilization. Reaching 100%
utilization on any resource could cause performance drops, increased latency, reduced throughput, and a higher
error rate.
It’s also possible to measure saturation per service using a resource management system like Kubernetes’ pod
resource limits.

A key benefit of distributed systems is the ability to add or remove capacity on demand or in response to
saturation. If our systems become too saturated due to heavy traffic, we can scale up by adding capacity via
additional computing nodes, then re-deploy our services across those nodes so they can access those extra
resources. Likewise, if saturation gets low, we can scale down by removing underutilized nodes and migrating our
services back to a smaller set of nodes. This ensures our systems are always performant enough to meet user
demand, while also saving costs during periods of little to no demand.

6ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

What are Service Level Objectives
(SLOS), AND WHY ARE THEY SO HARD TO IMPLEMENT?

When customers rely on a third-party service, they often want a guaranteed level of service. In enterprise
applications, this comes in the form of a contract called a Service Level Agreement (SLA). An SLA describes the
quality of service that a provider promises its customers. For cloud services, this typically includes service uptime,
data integrity, and data retention.

An SLA is a high-level promise typically defined by business leaders. To tie the SLA back to technical systems and
services, technical teams must identify the system and application-level metrics that best represent the goals of
the SLA. These are called Service Level Indicators (SLIs). Teams must also identify the range of values that those
metrics must fall within, which are called Service Level Objectives (SLOs). Engineers use SLIs to monitor the
health and performance of a system or service, and if those SLIs fall outside of the range specified in the SLO, then
the business is at risk of breaching its SLA.

SLAs are first and foremost business tools. They’re legal contracts between business leaders and customers,
but they’re ultimately based on technology. The most difficult part of implementing an SLA isn’t necessarily
defining the quality of service or the amount of compensation, but translating business objectives into technical
requirements. Teams need to convert business language into technical SLOs and SLIs, and they need to do this
in a way that accurately represents and measures business goals. Doing this takes ongoing collaboration across
the organization, a mature observability practice, and a strong understanding of how the behavior of technology
systems influences the user experience.

Even when there’s alignment on what the SLA should promise, there’s still the challenge of implementation.
SLIs require observability, and if teams aren’t already monitoring their services, setting up observability adds
development time and effort. SLAs raise many other questions, including:

Engineers use SLIs to monitor the
health and performance of a system or
service, and if those SLIs fall outside of
the range specified in the SLO, then the
business is at risk of breaching its SLA.

7ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

• Which system(s) or service(s) are relevant to my SLA? Which ones do I need to monitor,
and which ones are ancillary?

• How do we determine when an SLO has been violated? Who do we need to notify?

• How frequently should we sample our SLIs and compare them to our SLOs? How much will it
cost to collect, analyze, and retain this data, and how long should we keep it?

• How do we set up proactive monitoring and alerting to know when an SLO might be violated
soon? Do we need to set up an on-call rotation, so someone is always available in case we
exceed an SLO?

• Do we need to create incident response runbooks or disaster recovery plans for when an SLO
is violated? What should those runbooks and plans look like, and where will we store them so
on-call engineers can quickly access them? Will we need to train engineers on these plans?

• How will we keep track of your SLA(s) once it becomes part of our business processes?
How can we encourage engineers, project managers, etc. to track their SLA adherence
continually?

• What time periods should your SLA apply to? Should it be 24/7, or only cover normal
business hours?

• How much compensation should you provide? Do you offer a fixed financial discount
(e.g. 100% refund or credit for any downtime above a certain amount) or a sliding scale like
the Amazon Compute SLA? Should you build this compensation method into your billing
process, and if so, who would need to be involved, and how long would it take?

• Should you offer customer support when your SLA is violated, and if so, what would that
look like?

How to integrate
Golden Signals into your SLOs

Recall that SLAs are contractual agreements promising a certain level of performance to customers, and Golden
Signals measure how well a system or service is performing. At a high level, integrating Golden Signals into your
SLOs involves three steps:

1 – Identify your most critical services.

2 – Create monitors and/or alerts in your observability tool.

3 – Run tests to ensure your Golden Signals are tracking to your SLOs.

IDENTIF Y YOUR MOST CRITICAL SERVICES
A critical service is any service that will bring your application down if it fails. If you’re unsure which of your services
are critical, consider your application’s critical path. The critical path is the set of components (in this case,
services) required for your application to serve its core function.

For example, imagine we’re responsible for the reliability of a microservice-based banking application. Each
function of our bank is a distinct service.

Each function of the website is a distinct service, such as the website frontend, user account management, and
transaction ledger services. As a bank, our core workflow is allowing customers to log into their accounts, check
their balances, and transfer money. This means ensuring that our website frontend, user account management, and
transaction ledger services are part of our critical path. Therefore, we should focus our initial reliability efforts on them.

8ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

CONNECT YOUR GOLDEN SIGNALS TO YOUR SLIS
Once we’ve chosen one or more services, we need to identify their SLIs. Remember—an SLI is a metric that you
measure to ensure adherence to your SLOs. Think about the Golden Signals (latency, traffic, error rate, and
resource saturation), what they represent, and how that relates to your SLIs. Sometimes this is a one-to-one
relationship: for example, if one of your SLIs tracks the response time of each HTTP request that your frontend
receives, then you’re already tracking latency. If this isn’t the case, create a new SLI by using your monitoring tool
to collect and aggregate response times from your service. Then, based on the parameters of your SLO, create a
monitor to continually check this SLI and set the appropriate warning and alert levels.

Keep in mind that Golden Signals aren’t necessarily independent of each other. An increase in latency might’ve
been preceded by an increase in resource saturation or traffic. Likewise, an increased error rate could be caused
by increased saturation of a critical dependency causing it to fail. Correlations like these won’t always be obvious,
but tracking each Golden Signal will make it easier to recognize them.

How to ensure you
continually meet your SLOs

Now that we’ve set our SLOs and identified our SLIs, how do we make sure we’re meeting them? The obvious
answer is “keep our systems reliable,” but there are a lot of pieces to this simple statement. Reliability can mean
different things to different teams, even teams within the same organization. That’s why it’s important to:

1 – Create a standard definition of reliability and have a way to track it centrally for all teams.

2 – Use a consistent method of tracking your adherence to your SLOs.

3 – Run regular, proactive reliability tests to ensure you can always meet your SLOs.

CENTR ALIZE AND STANDARDIZE RELIABILIT Y
Although teams deploy and manage services independently of each other, we should still have a centralized place
to observe and track the reliability of every service. For example, allowing each team to use its own observability
tool will likely result in several tools with data silos and different dashboards that teams need to spend time
exporting and sharing. This makes it difficult to correlate SLIs and SLOs, which is especially dangerous since SLOs
are primarily driven by the organization and not technology teams.

Centralization has another benefit: standardization. For SLAs to work effectively, engineering teams need to agree
on using the same standards of measuring and tracking reliability. Otherwise, what one team considers degraded
service might be considered a critical failure by another team. Standardization ensures that different teams are
aligned on the same best practices for measuring and testing their services to a consistent organizational standard.

USE MONITORS TO TR ACK
YOUR ADHERENCE TO YOUR SLOS

In your observability tool, make sure to create monitors using your SLIs. Set an alert threshold based on your
SLOs, and if your tool supports it, set a warning threshold to give your team advanced notice before your SLO is
breached. Many enterprise observability tools like Datadog and New Relic can trigger monitors based on gradual
trends in SLIs and sudden rapid changes. Even a few seconds of advance warning can give your team the time
needed to avoid a large-scale outage.

9ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

USING RELIABILIT Y MANAGEMENT TO ENSURE YOU’RE
CONSISTENTLY MEETING YOUR RESILIENCY TARGETS

Setting up monitors and alerts gives you fast feedback on changes to your systems, but what if you want to be
more proactive? What if you’d like to use your Golden Signals to detect potential problems with your systems
before they happen? That’s where Reliability Management becomes useful.

Reliability Management is a practice that helps teams automate and standardize reliability. This
includes testing the reliability of systems and services, measuring reliability in an objective way, and
standardizing those tests and measurements across the organization. As the leading Reliability Management
platform, Gremlin lets you do this in a safe, simple, and secure way.

How do Golden Signals and SLOs fit into Reliability Management? When running reliability tests, Gremlin monitors
your Golden Signals to determine whether a service is healthy. If the Golden Signals remain in a healthy state (e.g.
within your SLOs) throughout the test, then your service is reliable. If not, then you now have a clear direction on
how to address those shortcomings.

The way this works is simple:
1 – Define your services in Gremlin.

2 – Run reliability tests to identify failure modes.

3 – Run regular automated reliability tests to maintain your reliability posture.

1. Set up your services in Gremlin
Gremlin uses services as the unit of reliability
measurement and improvement. A service is a
specific set of functionality with clear interfaces
provided by one or more systems within an
environment, like a checkout or authentication
service. Services map to infrastructure
running in your environment, including hosts,
containers, and Kubernetes resources. Gremlin
automatically detects your infrastructure, so
adding a service is as simple as selecting the
relevant components from a list.

While creating your service, you’ll be able to
link your Golden Signals to that service by
integrating Gremlin with your observability
tool. All you need to do is enter the URLs of
the monitors corresponding to your Golden
Signal, provide credentials to your observability
tool, and click Add. Once Gremlin successfully
verifies the connection, it will automatically
check those monitors before, during, and after
each reliability test. If any of your monitors
becomes unhealthy, Gremlin immediately halts
the test and rolls back its impact to prevent
unintended outages.

10ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

2. Proactively run reliability tests
Once you’ve added a service, Gremlin provides a suite of reliability tests that you can run on it right away. These tests
identify potential failure modes that teams may run into, such as poor (or zero) redundancy, limited scalability, and
tightly coupled dependencies. By running each test and tracking any failures, you’ll gain a clear picture of the possible
vulnerabilities in your service and how addressing them will improve your overall reliability posture.

There’s more you can do with reliability tests than checking the health of a service. Reliability tests simulate real-world
scenarios such as region or zone outages. Some of these scenarios require intervention from engineers (i.e. incident
response). Running reliability tests lets you simulate real-world incidents so you can test your incident response
procedures, ensure your playbooks are up-to-date, and train your engineers on how to handle real-world failures.

Lastly, you can use these tests to verify that your monitoring and observability are set up correctly in the first
place. For example, if you run a reliability test that you know will cause one of your Golden Signals to enter a failure
state, yet that Golden Signal never reports as unhealthy, you know your monitor isn’t configured correctly. This
allows you to fix your monitors so that they’re reporting accurately.

3. Maintain your reliability posture
with regular automated testing

After you’ve worked to improve your
reliability posture, it’s important to ensure
you’re maintaining it. Just because you ran
your reliability tests doesn’t mean your
service will always remain reliable; code
deployments, infrastructure changes, and
other variables can affect the reliability of
your services. Regular testing lets you validate
that these changes don’t negatively impact
your reliability, and if they do, then you have
advanced warnings to address them.

Gremlin makes it easy to auto-schedule
reliability tests for each of your services. You
can set your tests to run on specific days of
the week and during a time window of 2–24
hours. You can also specify whether to run
tests that have been run at least once or only
to run tests that have passed at least once.

11ACHIEVING SLO SUCCESS WITH GOLDEN SIGNALS AND RELIABILITY TESTING

Conclusion
Understanding reliability is already difficult, and will only become more difficult
as systems become more complex. The four Golden Signals are an easy and
effective way to measure the most important aspects of a system, and when
paired with a reliability management platform like Gremlin, they help you
proactively meet your SLOs so you can meet your legal obligations and deliver
the perfect customer experience.

Gremlin is the enterprise Chaos Engineering platform on a mission
to help build a more reliable internet. Their solutions turn failure
into resilience by offering engineers a fully hosted SaaS platform
to safely experiment on complex systems, in order to identify
weaknesses before they impact customers and cause revenue loss.

